
Week 1 Notes

1. Operating Systems (OS):
- An ​operating system​ is the software layer between user applications and

hardware.
- It serves as a resource manager.

I.e. It allows the proper use of resources like hardware, software and data.
- It also serves as a control program (protection).

I.e. It controls execution of user programs to prevent errors and improper
use of the computer.

- Turns ugly hardware into beautiful abstractions (file and directories).

- You can use Unix commands like cd, mv, cat, ls, etc to navigate

directories and files.
- You can use the man command to see what a command does.

2. Files:
- A ​file​ is a name collection of data with some attributes:

- Name
- Owner (User and Group)
- Size
- Permissions
- Time of creation
- Last Access
- Last Modification
- Location on disk

- To get info on a file in Unix, we can use:
1. ls -l
2. stat

Week 1 Notes

- A data structure called ​inode​ stores the info of a file, including disk blocks
which contain the file’s data.

- A file is identified by its ​inode number​.

3. Directories:
- A ​directory​ is a collection of files and sub-directories.
- In Unix, every directory is a file.
- The ​root​, denoted by /, is a special directory.
- A directory entry maps a file name to an inode.

Week 1 Notes

4. Directory Hierarchy:
- The directory hierarchy is an ​acyclic graph​ because of ​links​.

5. Links:
- Sharing of files can be implemented by creating a new directory entry

called a ​link​, which is a ​pointer​ to another file or directory.
- There are 2 types of links:

1. Hard Link:
- Created with ln <target> <name of link>
- The second directory entry is identical to the first and shares

the same inode number. Furthermore, both are files.
- If the first directory entry is deleted, the second one is still

there.
2. Soft Link:

- Created with ln -s <target> <name of link>
- The second directory entry points to a small file containing

the path of the first directory entry.
- The second directory entry is a link, and has a different

inode number than the first.
- If the first directory entry is deleted, then we have a

dangling reference​.
6. Permissions:

- File permissions​ have the follow setup: -----------
- After the first dash, the next 3 dashes are for the owner. Then, the

following 3 dashes are for the groups. Lastly, the final 3 dashes are for
others.
I.e. -(​---​)(​---​)(​---​)
The red dashes are for the owner.
The blue dashes are for the groups.
The orange dashes are for others.

- Directory permissions​ have the follow setup: d----------
- After the d, the first 3 dashes are for the owner. Then, the following 3

dashes are for the groups. Lastly, the final 3 dashes are for others.
I.e. d(​---​)(​---​)(​---​)
The red dashes are for the owner.
The blue dashes are for the groups.
The orange dashes are for others.

- Each entries specify 3 permissions, ​read​, ​write​ and ​execute​.

Week 1 Notes

 read write execute

Denoted by r w x

File Permission Gives authority to
open and read a file.

Gives authority to modify the
contents of a file.

Gives authority to
execute a file.

Directory
Permission

Gives authority to run
ls on a directory.

Gives authority to add, remove
and rename files in a directory.

Gives authority to cd
into a directory.

- Example:
drw-rw-r-- means that:

- The owner has read and write permissions, but not execute
permissions on the directory

- The group has read and write permissions, but not execute
permissions on the directory.

- Others have read permissions on the directory.
- You can use the command chmod to change permissions.
- Examples:

1. chmod u+x fname will give the user who owns fname execute
permissions.

2. chmod g+r fname will give all users in group read permissions.
3. chmod a+rwx will give all users all permissions.

7. Shell:
- A ​shell​ is a commandline interpreter.
- It is the interface between the user and an OS.
- The shell is a program that:

1. Waits for input commands.
2. Analyzes commands.
3. Determines what actions are to be performed.
4. Performs the actions.

- Shells can execute all the Unix commands, do I/O redirection, pipelining of
commands, filtering output of commands, job control, shell programming
and more.

8. Input and Output Redirection:
- Programs read from standard input (keyboard), write the results on

standard output (screen) and write errors to standard error (screen).
- You can redirect input, output and errors using the following:

1. > filename redirects the output to the file.
I.e. It replaces the file’s original text with the output.

2. >> filename appends the output to the file.

Week 1 Notes

3. < input file redirects input
- Standard output (stdout)​ is denoted by 1.
- Standard error (stderr)​ is denoted by 2.
- Examples

1. ls > output.txt will overwrite the contents of output.txt with the output
of ls.

2. ls >> output.txt will append the output of ls to the contents of
output.txt.

3. ls -z 2>output.txt will overwrite the contents of output.txt with an
error message, because ls -z is not a valid command.

9. Pipelines:
- Use | to send the output of one command to the input of another

command.
10.Filters:

- A ​filter​ reads from standard input, processes the input and writes to
standard output.

- Some useful filters
- wc: count words, lines, characters
- grep: filter lines that do or do not match a pattern
- uniq: remove repeated lines
- sort: sorts input
- head: output only the first lines of the provided input
- tail: output only the last lines of the provided input
- sed: a stream editor to perform text transformations

11.Job Control:
- A​ job/process​ is a program in execution. Use ps to view processes.
- Foreground job​ has control of the terminal.
- Background job​ runs concurrently with the shell in the background.
- To run a program in the background, append & to the name of the

program.
- At any point, a program can be suspended. Hit <ctrl> z to suspend the

current foreground job.
- The command jobs gives you a list of jobs and each is associated with a

number.
- fg [​num​] puts job ​num​ in the foreground.
- bg [​num​] puts job ​num​ in the background.
- kill %​num​ kills job ​num​.

